Dendrite and Axon Specific Geometrical Transformation in Neurite Development
نویسندگان
چکیده
We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size.
منابع مشابه
MicroRNA-182 Regulates Neurite Outgrowth Involving the PTEN/AKT Pathway
MicroRNAs are implicated in neuronal development and maturation. Neuronal maturation, including axon outgrowth and dendrite tree formation, is regulated by complex mechanisms and related to several neurodevelopmental disorders. We demonstrated that one neuron-enriched microRNA, microRNA-182 (miR-182), played a significant role in regulating neuronal axon outgrowth and dendrite tree formation. O...
متن کاملSpatial gene's (Tbata) implication in neurite outgrowth and dendrite patterning in hippocampal neurons
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based kinesin motor transport to deliver essential cargo into axons and dendrites. In developing neurons, kinesin trafficking is essential for delivering organelles and molecules that are crucial for elongation and guidance of the growing axonal and dendritic termini. I...
متن کاملSemaphorin3A Regulates Neuronal Polarization by Suppressing Axon Formation and Promoting Dendrite Growth
Semaphorin 3A (Sema3A) is a secreted factor known to guide axon/dendrite growth and neuronal migration. We found that it also acts as a polarizing factor for axon/dendrite development in cultured hippocampal neurons. Exposure of the undifferentiated neurite to localized Sema3A suppressed its differentiation into axon and promoted dendrite formation, resulting in axon formation away from the Sem...
متن کاملmls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans.
Glia are essential components of nervous systems. However, genetic programs promoting glia development and regulating glia-neuron interactions have not been extensively explored. Here we describe transcriptional programs required for development and function of the C. elegans cephalic sheath (CEPsh) glia. We demonstrate ventral- and dorsal-restricted roles for the mls-2/Nkx/Hmx and vab-3/Pax6/P...
متن کاملDifferentiated neurons retain the capacity to generate axons from dendrites
Cutting the axon of a morphologically polarized neuron (stage 3) close to the cell body causes another neurite to grow as an axon [1-3]. Stage 3 neurons still lack molecular segregation of axonal and dendritic proteins, however. Axonal and dendritic compartments acquire their distinct composition at stage 4 (4-5days in culture), when proteins such as the microtubule-associated protein 2 (MAP-2)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015